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Many sparse matrices and tensors from a variety of applications, such as finite element
methods and computational chemistry, have a natural aligned rectangular nonzero block
structure. Researchers have designed high-performance blocked sparse operations which can
take advantage of this sparsity structure to reduce the complexity of storing the locations of
nonzeros. The performance of a blocked sparse operation depends on how well the block size
reflects the structure of nonzeros in the tensor. Sparse tensor structure is generally unknown
until runtime, so block size selection must be efficient. The fill is a quantity which, for some
block size, relates the number of nonzero blocks to the number of nonzeros. Many
performance models use the fill to help choose a block size. However, the fill is expensive to
compute exactly.

We present a sampling-based algorithm called PHIL to estimate the fill of sparse matrices
and tensors in any format. We provide theoretical guarantees for sparse matrices and
tensors, and experimental results for matrices. The existing state-of-the-art fill estimation
algorithm, which we will call OSKI, runs in time linear in the number of elements in the
tensor. The number of samples PHIL needs to compute a fill estimate is unrelated to the
number of nonzeros and depends only on the order (number of dimensions) of the tensor,
desired accuracy of the estimate, desired probability of achieving this accuracy, and number
of considered block sizes. We parallelize PHIL, and refer to the parallel implementation as
PPHIL. We compare PHIL, PPHIL, and OSKI on a suite of 42 matrices. On average, PPHIL
was able to produce a fill estimate in 1.3810 times the time it took to compute one sparse
matrix vector multiply, which was 61.176 times faster than OSKI. The maximum error
generated by PHIL was 0.0480, while OSKI sometimes produced estimates with a complete
loss of accuracy. Finally, we find that PHIL and OSKI produce comparable speedups in
multicore blocked sparse matrix-vector multiplication (SpMV) when the block size was
chosen using fill estimates in a model due to Vuduc et al.

Much of the work presented in this thesis appears in [1], a paper coauthored with Helen Xu
and Nicholas Schiefer. The parallel algorithm PPHIL and its implementation are novel
contributions of this thesis. Helen’s masters thesis is also based on [1], and adds additional
test matrices [2].
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1 Introduction

Matrices and tensors (multidimensional generalizations of matrices) are considered sparse
when they contain far more zero entries than nonzero entries. Sparse matrices and tensors
allow performance engineers to write algorithms and data structures with complexity propor-
tional to the number of nonzero entries, leading to substantial improvements in performance
over dense implementations.

Sparse matrices and tensors have applications across a diverse range of domains [3,4].
For example, sparse tensors have applications in review systems [5], quantum chemistry [6],
and natural language processing [7]. Sparse matrix-vector multiplication is one of the most
heavily used numerical kernels in scientific computing. Parallel implementations of this
numerical kernel are usually limited by memory bandwidth [8,9].

Sparse storage formats provide benefits over dense storage by only storing and operating
upon the nonzeros. The increased complexity of data structures that can describe the
irregular locations of nonzeros in these formats, however, poses a significant challenge to
algorithm designers and performance engineers. Several storage formats for matrices and
tensors reduce this complexity by taking advantage of structural patterns in the locations of
nonzeros [4,9-12].

We focus on regular blocked formats, which store aligned rectangular dense blocks of
nonzeros instead of storing the nonzeros individually. Blocked formats reduce memory traffic
and improve the efficiency of parallel sparse operations. Computations over dense blocks
also admit more performance optimizations than computations over individual nonzeros [11].
Several sparse matrices and tensors in scientific computing lend themselves naturally to
blocked structures. For example, sparse matrices arising from finite element methods [13]
and sparse tensors arising in quantum chemistry [14] both exhibit regular block structure.

The performance of a blocked sparse operation depends on how the architecture responds
to a block size and how well the block size reflects the structure of the sparse tensor. Thus,
block size choice is critical to the performance of any blocked storage format. Vuduc et al.
show that choosing the correct blocking can speed up sparse matrix-vector multiplication
by a more than a factor 2 on matrices with a blocked structure [15]. Since zeros in the
dense blocks must be stored explicitly, an ideal blocking scheme would perform well on
the given architecture while minimizing the “filling in”, or explicit representation, of zeros.
Im et. al. proposed a performance model of blocked sparse matrix multiplication which
depends on a quantity called the fill, or the ratio of introduced zeros to the original number
of nonzeros [16]. Many subsequent performance models for matrices have been formulated in
terms of the fill or directly related quantities [8,13,15-22]. In the absence of an efficient fill
estimation algorithm, block size selection for sparse tensors has been limited to empirical
search [23].

The structure of the sparse tensor is generally not known before runtime. Thus, block
size selection must occur at runtime and therefore be efficient. Computing the fill dominates
the cost of block size selection and is too costly to compute exactly for all potential block
sizes, taking more than hundreds of times the cost of a sparse matrix-vector multiplication.
Previously, Vuduc et. al. described an algorithm, which we call OSKI, for estimating the fill
of a sparse tensor [13]. OSKI estimates the fill by computing the exact fill on a random
selection of rows and then averaging. However, the fill may vary substantially between rows,
leaving OSKI vulnerable to several cases of pathological inputs. No theoretical analysis of
OSKI has been given, and we show several real-world example matrices on which OSKI
consistently produces erroneous results.



1.1 Contributions

We describe PHIL, the first fill estimation algorithm with provable guarantees for sparse
matrices and tensors. At a high level, PHIL repeatedly samples a nonzero entry in the
tensor, finds neighboring nonzeros, then computes the number of nonzero elements each
block containing that entry for all relevant block sizes. We also show how to parallelize PHIL,
and will refer to our multicore parallel implementation of PHIL as PPHIL.

OSKI runs in time linear in the number of nonzeros and is described only for matrices in
CSR format. We provide an exact bound on the number of samples that does not depend
on the number of nonzeros in the tensor. As long as the tensor storage format allows fast
(sublinear in the size of the input) access to elements of the tensor, PHIL runs in time
sublinear in the number of nonzeros. However, PHIL does not require a specific tensor storage
format.

Given a tensor of order R (a tensor with R dimensions) and a maximum block size B,
PHIL only needs B?%In(2B%/§)/(2€%) samples to compute a result to within € relative error
with probability at least 1 — 4. In addition to the time taken to find the neighboring nonzeros,
each sample (for all B block sizes) can be processed with (R + 1)(2B) integer additions
and B® floating point divisions and additions. We later explain how PHIL can be extended
to consider arbitrarily large block sizes by limiting attention to multiples of some base block
size.

We parallelize PHIL using OpenMP and separate samples. An initial attempt at paral-
lelization was made in [2] but did not produce estimates of the same quality as PHIL. Our
implementation PPHIL achieves better speedups and for the first time produces estimates of
identical quality to PHIL.

We experimentally evaluate PHIL, PPHIL, and OSKI on a suite of sparse matrices and
both “Ivy Bridge” and “Haswell” architectures. As expected, PHIL and PPHIL produced
estimates of the same quality. The maximum error generated by PPHIL was 0.0480, while
OSKI sometimes produced estimates with a complete loss of accuracy. On average, PPHIL
was able to produce a fill estimate in 1.3810 times the time it took to compute one sparse
matrix vector multiply, which was 61.176 times faster than OSKI. When estimating the
fill of all blocks with size less than 12, PPHIL was an average of 6.6154 times faster than
PHIL on “Ivy Bridge” and 9.6680 times faster than PHIL on “Haswell”. We used the Tensor
Algebra Compiler (TACO) to generate parallel blocked sparse matrix vector multiplication
kernels [24]. PHIL, PPHIL, and OSKI produced fill estimates that resulted in almost identical
sparse matrix-vector multiplication times when the performance model proposed by Vuduc
et al. was used to select a block size [15].

2 Background

In this section we introduce tensor notation, various sparse tensor representations, and
blocking schemes. We conclude the section by describing the fill estimation problem and
related previous work.

2.1 Tensors

Throughout this paper, we discuss order-R tensors in a particular orthogonal basis. That is,
tensors are R-dimensional arrays of elements over some field [F, usually the real or complex



numbers. We denote tensors by capital script letters A and vectors by lowercase boldface
letters a.

The element of a order-R tensor A € F/1x12XXIr addressed by a coordinate made up
of R indices (iy,142,...,ir) where 1 <4, < I, is denoted Aliy,is,...,ir]. For compactness
of notation, we sometimes specify a coordinate as an R-component vector i = (i1,142,...,iR).
We represent the range of indices 4,7 + 1,...,4" with the syntax ¢ : /. We represent a range
of coordinates with the syntax i : i’, meaning (i1 : 4}) X - -+ X (ig : i’z). Subtensors are formed
when we fix a subset of coordinates. We also use : without bounds to indicate all elements
along a particular dimension. Thus, the middle n/2 columns of a matrix 4 € F**" would
be written A[:,n/4 : 3n/4].

We denote the number of nonzero entries in a tensor A as k(.A). When we compare a
vector to a scalar, our comparison is true if and only if the comparison is true for each entry
of the vector pointwise. For convenience, we occasionally redefine the starting coordinate
of a tensor. Thus, A € F* is an (I} — I; +1) x - -- x (I, — I + 1) tensor whose smallest
coordinate is I and largest coordinate is I'.

2.2 Sparse Tensor Representations

Most sparse formats store only the coordinates which correspond to nonzeros and the nonzero
values themselves. While we discuss a few specific formats, note that our algorithm applies
to any sparse tensor format which admits iteration over nonzero coordinates.

The simplest sparse matrix and tensor format is Coordinate (COO) [4]. In this format,
all coordinates which correspond to nonzeros are stored in an unordered list. Entries are
stored in sorted order of their coordinates.

Perhaps the most popular sparse matrix format is the Compressed Sparse Row (CSR) [10]
sparse matrix format. In CSR format, the indices of nonzeros in each row are stored in
sorted order. Each row has an associated list of coordinates of nonzeros. The nonzeros are
stored in a single array with the same ordering as their coordinates. CSR can be extended
to a tensor format in many ways [4], such as Compressed Sparse Fiber (CSF) [24,25]. In
CSF format, each coordinate i is stored in a tree structure where a node in level r represents
an index 7, which corresponds to a set of nonzeros. CSR is the matrix case of CSF.

To decrease the complexity of storing the coordinates of individual nonzeros, performance
engineers may store blocks of nearby nonzeros together. Blocked formats can reduce
the memory usage of sparse operations by reducing the complexity of locating nonzeros.
Programmers and compilers can optimize linear algebra on small dense blocks using standard
techniques such as loop unrolling, register and cache blocking, and instruction-level parallelism.
The effectiveness of these optimizations depends heavily on the structure of the tensor and
the blocked storage format [11, 26].

Proposed blocked storage formats are diverse, altering parameters such as the size and
alignment of blocks, or the storage format for locations of blocks and nonzeros within
blocks [11]. Some formats involve reordering to improve the block structure of the tensor (in
this case, blocks may not represent contiguous entries in the original tensor) [10,12].

In this paper, we focus on regular blocking for simplicity, where the aligned rectangular
blocks are of equal size and represent contiguous entries in the original tensor. For our
experiments, we will use a simple variant of CSR called Blocked Compressed Sparse Row
(BCSR) [10], where the locations of the nonzero blocks are recorded using CSR format. The
BCSR format can be extended naturally to (BCSF) format to support higher-dimensional
tensors as well [23,24]. In BCSR and BCSF, each block is stored in a dense format, with



zeros represented explicitly, and only blocks which contain nonzeros are stored.

2.3 Regular Blocking

Definition 2.1. A blocking scheme b of a tensor A € Fl1*[2X*Ir is parameterized by a
vector b = (b1, ba, ..., br) of block sizes. The blocking scheme induced by b is a partition of
A into R-dimensional subtensors with b, entries along the r** dimension. Thus, a nonzero
at coordinate i would be stored at the block coordinate

(R AR

We present an example of a blocking scheme in a sparse matrix in Figure 1. Blocked
formats like BCSR may fill in the empty slots of nonempty blocks with explicit zeros.

Figure 1: On the left, a sparse matrix before blocking. On the right, the same sparse
matrix after blocking. The squares denote nonzero elements and circles are explicit zeros
that are introduced due to the storage format. In this example, the blocking scheme
b = (2,3) and kp(A) = 12. The number of nonzero elements k(A) = 30, so the fill
fo(A) =(2x3x12)/30 =2.4.

2.4 Fill Estimation

Since the performance of blocked sparse tensor operations depends on the block size and the
structure of the tensor, our goal is to choose the block size that gives the best performance for
our given tensor. In blocked sparse formats that store dense blocks, larger blocks generally
allow more opportunities for performance optimization. However, if the blocks do not capture
the structure of the tensor, we will waste time computing with explicitly represented zeros.

We want to find a blocking scheme that includes all of the nonzero entries of A in very
few blocks. Thus, we are interested in the number of blocks containing a nonzero under the
blocking scheme b, which we denote ky(.A). Notice that k1 (A) = k(A), since tiling A into
unit-size blocks will have exactly one non-empty block for every nonzero. The fill is a metric
which uses the number of nonzero blocks to formally express this notion of blocking scheme
quality:

Definition 2.2 ( [16]). The fill of a tensor A with respect to a particular blocking scheme
b is the ratio
_ bibz---brky(A)



That is, the fill is the ratio of the number of entries in nonempty blocks in the blocking
scheme b of A to the number of nonzeros in A. Where it is clear which tensor we refer
to, we often write the fill as fp. For a fixed number of nonzeros, the fill f,(A) is directly
proportional to the number of nonzero blocks ky(A).

The fill was first defined by Im et. al., and later used in several BCSR matrix-vector
multiply performance prediction models [13,15-20]. The fill has also been used to select
block sizes for sparse triangular solve and sparse A7 . Ax [13]. The number of nonzero blocks
(proportional to the fill) has been used in performance models for general blocked format
sparse matrix-vector multiply [8,21,22]. Block size selection remains a difficult problem
for tensors as it is difficult to estimate the fill, so developers have adopted empirical search
techniques [23]. An estimate of the fill could easily be added as an additional feature in
feature-based machine learning approaches to sparse kernel performance modeling [27].

As an example, we explain the simple performance model for blocked sparse matrix-vector
multiply given in [15]. There are more accurate performance models which still depend on
the fill, but our focus is on fill estimation and not performance modeling. It was later shown
that, when the fill was known exactly, performance of the resulting blocking scheme was
optimal or near-optimal (within 5%) [13].

Once per machine, we compute a profile of how the machine performs for each block
size. Let P, be the performance of the machine (in flop/s) on a dense matrix stored with
blocking scheme b. P, is a measure of how efficiently we can process nonzeros when nonzeros
are stored in blocks of size b. We can estimate the performance of the machine on the
BCSR format of A as P,/ fu(A), then choose a block size which maximizes the estimated
performance.

For dense blocks in matrices, we care only about block sizes by x by that are small enough
to fit by input, be output, and at least one matrix element in registers. This usually limits
our attention to by, be < 12 [13]. Thus, our problem is to quickly compute an estimate of the
fill for these block sizes with reasonable accuracy.

Problem 2.1 (Fill Estimation). Given a tensor .4 and a maximum block size B, compute a
(randomized) approximation F},(A) with error at most € > 0 such that

(1=€)fo(A) < Fp(A) < (14 €)fu(A)

for all (square or rectangular) block sizes b < B, with probability at least 1 — § where
0 < § < 1. Equivalently, we want to compute a random variable Fy,(A) such that

Pr maxM>e <.
biB Jo

Since fu(A) differs from &y, (A) by a multiplicative factor of b1bs - - - br/k(A) (which can

easily be computed in constant time), estimating the fill is equivalent to estimating the
number of nonzero blocks.

2.5 Previous Work

Exact computation of the fill for many block sizes is computationally intractable in comparison
to the cost of a sparse matrix-vector multiplication. There has been a recent attempt to
parallelize the computation on matrices [28]. However, it was only able to provide competitive
results by drastically reducing the number of quantities estimated.



To our knowledge, only one previously proposed algorithm estimates the fill instead of
computing it exactly [13,17]. Since the algorithm is implemented in the Optimized Sparse
Kernel Interface (OSKI) library, we will refer to it as OSKI [19]. For each block row size
1 <b; < B, OSKI samples a fraction of block rows. For each sampled block row, OSKI
computes the fill exactly for all block column sizes 1 < by < B simultaneously. OSKI does
this by iterating through coordinates i of nonzeros in the block row and using a perfect hash
table for each block column size to record the number of unique block column coordinates
[i2/b2] seen. The fraction of block rows evaluated is specified by a parameter o which is
usually set to 0.02.

Although OSKI can estimate the fill of most matrices, it does not give predictable results.
In our work, we show that it is vulnerable to special cases. To our knowledge, there are no
theoretical guarantees on the accuracy of OSKI, and no existing algorithm which estimates
the fill of tensors.

Estimating the fill of a single blocking scheme b can be thought of as a special case of
the count-distinct problem, where the goal is to estimate the number of distinct elements
in a stream. Consider the stream where each element is the block coordinate of a nonzero
coordinate in \A. The number of distinct elements in this stream is equal to kp(A), which is
directly proportional to fp(A). However, an optimal solution to the count-distinct problem
must examine the entire stream (all the nonzeros) and use ©(1/€? + log(k(A))) space to
achieve € accuracy [29]. Thus, solving Problem 2.1 using BT separate instances of the
count-distinet problem would take at least Q(B®k(A)) time. However, the count-distinct
problem may still prove useful to those who wish to estimate the fill of a very small number
of large block sizes [30].

3 The Algorithm

We begin with a high-level summary of PHIL, our sampling-based fill estimation algorithm.
Suppose we want to estimate the fill of a sparse tensor A given a maximum block size B.
PHIL repeatedly samples a coordinate i of a nonzero with replacement from A. For each
blocking scheme b < B, it computes the number zp (A, 1) of nonzero entries in the block that
i appears in under the blocking scheme b, which it uses to estimate the fill.

PHIL computes zp (A, i) efficiently by using prefix sums to minimize redundant work. Once
we find the coordinates of all nonzeros near i, we use multidimensional prefix sums (cumulative
sums) to compute zp(A, i) for all blocking schemes b < B in less than (R + 1)(2B)% integer
additions. Note that B and R are both expected to be small, and we are computing B
separate quantities.

We define Fy, a quantity proportional to the average of the reciprocals 1/2z,(A4,1), and
show that Fy, is an unbiased estimator for the fill fi, (a random variable with expectation
equal to the fill). In Theorem 3.1 we give a concentration bound for Fy,, showing that PHIL
solves the fill approximation problem as long as we use enough samples. We include a proof
and discussion of Theorem 3.1 in Section 4.

Theorem 3.1. If we sample at least

B2R 2BR
5§25 =57 (5>

10



samples with replacement, then

— K
Pr maXM

<e|l>1-96.
b<B Jo

The required number of samples Sy is independent of the number of nonzeros k(.A). Sy
depends only on the desired accuracy and desired probability of attaining such accuracy.
The required number of samples is constant with respect to the problem size. This is a clear
advantage for large tensors where performance engineering matters the most.

3.1 Fill Estimation

We describe how PHIL computes an unbiased estimator for the fill. First, we introduce a few
important definitions for working with blocking schemes on tensors:

Definition 3.1. The head of a block is the unique coordinate in the block with the lowest
index along all dimensions. For any coordinate i, let hy (i) denote the head of i’s block under
the blocking scheme b. Similarly, the tail of a block is the unique coordinate in the block

with the highest index along all dimensions. For any coordinate i, let ¢,(i) denote the tail of
i’s block under b.

Let xp(A, 1) be defined on each coordinate i of a nonzero of A as:

o 1 — 1
rh(A, 1) = (A1) k(ARs() : tu()])

where 2z (A, 1) is the number of nonzeros in the block of i under blocking scheme b. Thus,
2p(A, 1) is the reciprocal of the number of nonzeros in i’s block.

PHIL averages xp(A,1) over S coordinates iy, is,...,ig sampled with replacement from
the set of coordinates of nonzeros in A. The average of zp(A,1) over all i is closely related
to the fill, so we compute the fill estimate Fy, as:

Definition 3.2. For all b < B:

s
biby---b .
Fy = %R E b (A, i5)

Jj=1

Theorem 3.2. For any blocking scheme b, the random variable Fy, is an unbiased estimator
for the fill: that is, E[Fy] = fu(A).

Proof. Notice that the sum of zp (A, 1) over all of the nonzeros i within a particular block is
1 if the block is not empty. Thus, the sum of x1,(.A,1) over all nonzeros i in A is equal to
kb(A), the number of blocks that contain nonzeros. Thus, we may multiply the average of
2p (A, 1) over i by bi1bs - --br to obtain an estimator of f,(A,1), by definition. O

We describe how PHIL computes Fy, in Algorithm 3.1.

11



Algorithm 3.1. Given a sparse tensor A € Fl1x2XxIr and B, compute an approximation
to fub(A) for all block sizes b < B. Note that A may be stored in a sparse format, whereas
all other tensors are stored in a dense format.
Require:

0<6<1, €e>0, B2>1

function ESTIMATEFILL(A, B, €, 0)

y c RBX--AXB
F RmexB

1:
2
3 G 2R R
B%F 2B"

4 S+ ’7262 IH(T>—‘
5 Y<«0

6: for i € sample of size S with replacement from the nonzero coordinates of A do
7

8

9
10

Y < Y + CoMPUTEX (A, B, i)

forbe Bx---x Bdo
]:[b] - biba---brY[b]

return F
Ensure:
(1—€)fu(A) < F[b] < (1+€)fb(A) with probability at least (1 — ).

3.2 ComputeX

We could compute zp(A,7) for a sample coordinate i by looking up how many nonzeros are
in the block corresponding to i and returning the reciprocal. However, finding the number of
nonzeros in a block takes time linear in the number of nonzeros in that block (in addition to
the cost of finding these coordinates) and therefore could potentially take time B in an
order-R tensor.

PHIL reuses the computations of (A, i) for the same i over different blocking schemes b.
After finding the locations of all the nonzeros within a B radius of a nonzero at coordinate i,
we can compute zp (A, 1) for all b < B at the same time. This is described in Algorithm 3.2
and illustrated in Figure 2.

The main idea behind COMPUTE/X is to create a tensor Z, corresponding to the number
of nonzeros of A in subtensors surrounding i. We can use the differences in the number of
nonzeros in the subtensors to find the number of nonzeros in the desired block.

More formally, we construct some Z; € Ni=B4+B-1 gych that Z[j] is equal to the
number of nonzeros in the subtensor A[i — B : j]. In one dimension, we can compute zp, (A, i)
as Zo[tb(1)] — Zo[hb(i) — 1]. In two dimensions, we can compute 2z, (A, 1) as Zo[tp(i)] —
Zolty, (i1), b, (i2) = 1] = Zolhy, (i1) — 1, tu, (i2)] + Zo[hn (i) — 1].

The core of COMPUTEX is the computation of Zy. We initialize Z,[j] to 1 if A[j] # 0
and 0 otherwise. Then, we take a prefix sum along each dimension in turn. After the first
prefix sum, Z;[j] is the number of nonzeros in A[i; — B : ji, j2, ..., jr|. After the r** prefix
sum, Zy[j] is the number of nonzeros in A[iy — B : j1,...,% — B : jr, jr41,-- -, jr|. After the
R prefix sum, we have computed Zj.

We find the number of nonzeros in each block (z1(.A,1)) using differences between
elements of Zj. For each value of by, we set Zi[j2,...,jr] to the number of nonzeros in
the subtensor A[hy, (41) : tp, (41),92 — B : ja,...,ir — B : jr] as Zo[ts, (1), J2,---,JR] —
ZO[hln (Zl) - 1aj2, cee ajR]'

Having computed Z; for a particular value of by, then for each value of b, we take

12



Algorithm 3.2. Given a sparse tensor A € Fl1*12X*Ir § and B, compute xp(A, i) for all
blocking schemes b < B. Note that A may be stored in a sparse format, whereas all other
tensors are stored in a dense format.
Require:
Ali] #0, B>1
1: function COMPUTEX (A, i, B)

2. ZO ENi—B:H—B—l
3: Zy+0
4:  for j € NONZEROSINRANGE(A,i— B,i+ B —1) do
5: Zo[j]%].
6: forrel:Rdo
7: forjei.—B+1:i.+B—1do
8: Zolsyee sy dyiye eyl 4 2ol oy dy i)+
—— ——
Zolsyeoyig— 100000
————

r

9: forb, €1:Bdo

10: Z1 Zo[tbl (il), Ly ey 2] — ZO[hbl(il) —1,:..., Z}
S~—— N——
r—1 r—1
11: for by € 1: B do
12: Zo— 2 [tb2 (ig), e, Z} —Z [hb2 (22) —1,5..., :]
S~—— S——
r—2 r—2
13: for bp € 1: B do
14: ZRr +— ZR—l[tbR(iR)} — ZR—l[th(iR) — 1}
15: X[b] + Z-
Ensure:

X[b] + zp(A, i)

13



differences between elements of Z; to compute Z5, where Z5[js, ..., jgr] is the number of
nonzeros in the subtensor Alhy, (i1) : tp, (i1), by (i2) @ Ty, (i2),43 — B : Js,...,ig — B : jg].
Continuing in this way, Zg is just the scalar zp, (A, j).

Each prefix sum takes at most (2B) additions to compute, and we compute R prefix
sums. In the final loop, Z, is of size (2B)%~". We must compute Z, exactly B" times.
Therefore, the block difference computation incurs Zf’:l 277(2B)" subtractions. Thus,
COMPUTEX uses at most (R + 1)(2B)% integer additions to compute Z.

3.3 NonzerosInRange

Since A may be stored in an arbitrary sparse format, we abstract the process of finding the
coordinates of nonzeros within a certain range into an algorithm called NONZEROSINRANGE.
NONZEROSINRANGE(A, j,j’) returns a list of all i € j : j’ such that A[i] # 0.

The implementation of NONZEROSINRANGE depends on the initial format of the sparse
matrix 4. We discuss two implementations to show why this routine should not be costly in
theory or practice.

If A is a matrix in CSR format (where coordinates of nonzeros in each row are stored in
sorted order of their column index), then using a binary search within each row provides an
O(Blog,(I3) + B?) time implementation, where the B? term reflects the maximum number
of coordinates that may need to be returned. This search technique generalizes to tensors in

r=2
We now describe an implementation of NONZEROSINRANGE for a tensor A stored in any

other format (e.g. COO). Before we run ESTIMATEFILL, we block the entire tensor A into
blocks of size B X --- x B and store the blocks in a sparse format (without explicit zeros).
We store each block that contains at least one nonzero in a hash table. NONZEROSINRANGE
is only ever called with ranges of size 2B x --- x 2B and only needs to look up the 3% blocks
which might contain zeros in the target range, scan through these blocks to find nonzeros
which are actually in the target range, and return these nonzeros. The entire algorithm has
a setup time of O(k(A)) and an individual query time of O(3%B%).

R
CSF format, yielding an O (Z B tlogy(I,) + BR) time implementation.

4 Analysis

We want to select the number of samples, S, as small as possible for efficiency while still
having provable guarantees on the concentration of our unbiased estimator y zp(A,ij)/S.
We use Hoeffding’s inequality [31] as a concentration bound for sampling with replacement.

Theorem 4.1 (Hoeffding’s inequality). Let X1, Xo,..., Xy be M independent random
variables bounded such that 0 < X; <1. Let X = % Zjle X be their mean. Then for any
t>0,

Pr[|X — IE[X]’ > t] < 2exp(—2Mt?).

For any blocking scheme b and any tensor element i, the value (A, i) is a random variable
bounded between 0 and 1. Furthermore, since the entries iy, s, ...,ig are sampled indepen-
dently from among the nonzeros, the random variables xy, (A, i1), (A, i), ..., zp(A, ig) are
independent. Therefore, we obtain our concentration bound from Theorem 4.1:
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Figure 2: Here we visualize the execution of COMPUTEX as it computes one element of its
output X. Specifically, we show how it computes zp(A,i) = X[b]. In this example, our
maximum block size is B = 3 and our nonzero of interest is i = (7,8). Continuing our
example in Figure 1, we will show computation of X only for the blocking scheme b = (2, 3).
Our goal is to compute the reciprocal of the number of nonzero elements in i’s block (depicted
by the shaded region).

S

e 00 0 0
ecc”” 000000
oo o0 o0 o0

[ o0 A o

. o o o0 o
~‘\\\'0 0 01 o

(a) First, COMPUTEX uses NONZEROSINRANGE to find the nonzeros within a box of size 2B around
i. Then, it creates a matrix of the same size as the box and fills it with 0 where there are zeros in
the original matrix and 1 where there are nonzeros.

1 2 2 2 2 2 1 2 2 2 2 2
00 0 0 0 O 12 2 2 2 2
01 1 1 1 1 13 3 3 3 3
0 01 2 3 3 1 34 5 6 6
01 12 2 2 14 5 7 8 8
0 0 0 1 2 2 1 4 5 8 10 10

(b) Next, COMPUTEX performs a prefix sum on the rows and then columns of the matrix. Notice
that element j of the matrix is now equal to the number of nonzero elements in the box extending
from the upper left of the matrix to element j.

7

1 4 5 8 10 10

(¢) Finally, COMPUTEX computes the number of elements in the desired block by subtracting the
number of nonzeros in each medium sized box from the large box, and adding back in the small
box to avoid double-counting. Since all of these boxes begin in the upper left corner of our matrix,
the number of nonzeros in these boxes are given by the prefix sum results in their lower right
corners. The difference operation tells us that the shaded region contains 8 — 4 — 3 + 3 = 4 nonzeros.
Thus, zn(A,i) = 1/4. At this point, it is easy to compute = (A, 1) for different b by repeating the
difference operation with different blocks.
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Theorem 4.2 (Restatement of Theorem 3.1). If we sample at least
B2R 2BR
S>8 =—In|—
=907 92 ( 5 )
samples with replacement, then

- K
Pr [max M

< >1—-09.
max T 6:|]. 0

Proof. We have F, = biby---bgr(1/S) Zle (A, 1) by definition. By Theorem 3.2,
E[Fy,] = fo. Since each examined block contains at least 1 and at most BF nonzeros,
rp(A, 1), 76(A 12), ..., 2b(A,is) are independent and bounded between 1/BF and 1. Simi-
larly, ky(A)/k(A) in Definition 2.2 is bounded to the same range. By Theorem 4.1,

|fo — Fol ] { Fy, — E[Fy)] fo ]
Pr|——— >¢| =Pr > €
[ Io - biby---bgr |~ biba-- bR

cky(A)\ > —25€?
§2eXp <_2S( k(A) §2exp W 5
since Fy is b1bs - - - bg times an average of S values, each of which is at least l/BR. By the
union bound over the B possible blocking schemes b,

|fb _Fb| R —2562
_—> < .
Pr [{)nga}}g{ T >e|l <2B%exp Bk

Therefore, if S > Sy = E;Tzrf In (%)v

Pr{maXM2€]§5. O]
b<B fo

Note that this bound is constant with respect to the number of nonzeros k(.A), which is
highly advantageous when S < k(A). Obtaining a high probability bound with § < 1/k(A)¥
for some w would indeed require dependence on k(.A), albeit only logarithmically. However,
in practice a small constant d such as 0.01 likely suffices.

If strong guarantees are desired, such as with matrix (R = 2) settings of B = 12, ¢ = 0.1
and § = 0.01, it is possible that the number of required samples (10,645,998) exceeds the
number of nonzeros in smaller matrices. This is fundamental to bounds based on sampling
with replacement. If we sample without replacement, we can apply a recent result using the
Hoeffding-Serfling inequality to obtain a bound which scales with the number of nonzeros [32].
This bound is more complicated to describe, and requires the implementation to generate
samples without replacement. Furthermore, this bound would still require sampling a
significant fraction of the nonzeros.

Instead, we suggest that implementers who need strong guarantees on small problems
use an efficient exact algorithm or lower the maximum block size B (in our example, B = 4
needs only 103,308 samples). We show in the next section that PHIL empirically provides far
more accurate estimates than the worst-case guaranteed theoretical bound. In practice, for
B =12, running PHIL with e = 3 and 6 = 0.01 (11,829 samples) results in a mean maximum
relative error of at most 0.05 for all cases we tested. PHIL still produces an accurate estimate
even when run with relaxed guarantees.

16



5 Implementation

We implemented ' PHIL for sparse matrices in CSR format in C+4, which can efficiently
execute the dense integer and floating point operations in Algorithm 3.2. We made use of
several library routines from the C++ Standard Library.

Several measures were taken to ensure efficient memory access. First, we generate a
sample of linear nonzero indices (a list of integers | where [ refers to the I** nonzero in
row-major order) into our matrix, using std: :mt19937. We also use std: :seed_seq with
both a global seed and the trial number as sources of entropy to initialize random number
generators in different trials differently. Next, we sort these linear indices (using std: :sort)
before converting them to (4,j) coordinate pairs (using std: :lower_bound) as a subroutine
and incrementing the row (i) coordinate as the conversion progresses. Thus, the sample
coordinates are constructed and processed in row-major sorted order.

Random number generators on each thread are seeded using a global seed, the trial
number, and the processor number as sources of entropy in a call to std: :seed_seq.

5.1 Parallelization

Because PHIL computes samples independently, we can create a multicore parallel imple-
mentation of PHIL, which we will call PPHIL. We implement PPHIL using OpenMP. Line 6
contains the majority of the work in Algorithm 3.1, computing

s
Yo = Zﬂﬁb(A, ij)

j=1

for all b < B. We can parallelize this computation by dividing the summation and com-
putation of x among processors. Assume we have N processors and each processor n is
responsible for samples iy, _, 41,15, _,+2,...,17, such that Jo =0 and Jy = S. Then,

N In
Vo= > w(Al)

n=1j=J,_1+1

In a parallel execution, each processor uses a local copy of ) to accumulate a local sum of
xp(A,1). After all iterations are complete, we can sum the local copies to obtain the true Y,
which we scale as in Line 9 of Algorithm 3.1 to produce the fill estimate.

We can also parallelize the construction of the sorted sample with replacement using a
slight modification of the method described in [33]. We start by assigning each processor
an equally sized, contiguous range of all possible linear nonzero indices. This keeps the
processors operating on distinct sets of nonzeros which are more likely to be close to each
other. Assume processor n is responsible for nonzeros I,,_1 + 1 to I, where lp = 1 and
In = k(A). If the nonzeros are sampled with replacement, the number of samples which
processor n is responsible for (J,, — J,,—1) is binomially distributed. Letting 3(¢, p) represent a
binomially distributed random variable with ¢ trials each with probability p, we can compute
J once at the beginning of the algorithm using the following relationship.

by — ln_
Jn = Jn—1 +ﬂ (JN - Jnfly 1)
lN *ln—l

LOur code is available under the BSD 3-clause license at
https://github.com/peterahrens/FillEstimation/releases/tag/PeterThesis
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Thus, J, — J,_1 is the number of samples that would fall into the range l,_1 +1 to I, in a
sample of S nonzero indices from 1 to N with replacement.

All that must be communicated to each processor n is the range of linear nonzero indices
(ln—1 to 1) and the number of samples that are to be taken in that range (J,, — J,—1), and
the rest of computation can then be performed independently. Finally, in parallel, each
processor can populate a local buffer with the required number of samples (with replacement)
within each range, then sort these linear indices and create the coordinate pairs similarly to
the serial version. Since the processors are responsible for equally, binomially, distributed
amounts of work, it is very likely that the work will be close to balanced. This can be shown
using the same concentration bound as before [31].

6 Results

We compare PHIL to the competing algorithm described in [13], which we will refer to as
OSKI. We use a test suite inspired by matrices from [13] designed to test fill estimation. We
also include some synthetic matrices we generated to test worst-case behavior. Our test suite
is summarized in the first few columns of Table 3. We find that PHIL computes the fill more
accurately in less time than OSKI for a wide range of matrices in our test suite. We also find
that when using optimized BCSR matrix-vector multiplication routines generated by the
Tensor Algebra Compiler (TACO) [24] and the performance model given in [15] (described in
Section 2), the estimates produced by PHIL yield BCSR matrix-vector multiply performance
comparable to the performance obtained using estimates from OSKI.

6.1 System

We ran all of our experiments on two different nodes. The first node had two sockets, each
with a 12-core Intel®) Xeon™ Processor E5-2695 v2 “Ivy Bridge” at 2.4 GHz. Each core has
32 KB of L1 cache and 256 KB of L2 cache. Each socket has 30 MB of shared L3 cache.

The second node had two sockets, each with a 16-core Intel®) Xeon™ Processor E5-2698
v3 “Haswell” at 2.3 GHz. Each core has 64 KB of L1 cache and 256 KB of L2 cache. Each
socket has 40 MB of shared L3 cache.

We found that our parallel algorithms (PPHIL and the kernels generated by TACO) ran
fastest on one socket, with 12 threads for the “Ivy Bridge” architecture and 16 threads for
the “Haswell” architecture.

We compiled our fill estimation kernels using g++ using the flags -std=c99 -fopenmp
-03 -march=native -ffast-math TACO generates parallel BCSR kernels for each block
size, using constant loop bounds for the inner loops. It compiled these kernels with gcc
using the flags -std=c99 -fopenmp -03 -march=native -ffast-math -funroll-loops
Our implementations of PHIL and OSKI ran serially, and the implementation of PPHIL ran
in parallel.

6.2 Test Cases

In Figure 3, we test our implementations on a suite of 42 matrices inspired by the test set
n [13]. All but two are from the University of Florida Sparse Matrix Collection [3]. These
matrices were chosen to represent a variety of application domains and block structures.
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In Figure 4, we focus on four of these matrices, two of which were used by Vuduc et al.
to measure OSKI [13]. We describe two pathological cases we invented to induce worst-case
behavior in PHIL and OSKI, respectively.

pathological PHIL is a matrix designed to bring out the worst in our PHIL algorithm.
Let A be a worst case tensor for some blocking scheme b. Assume for contradiction that
there are nonzero blocks which are not completely full and contain more than one nonzero.
We can add nonzeros to more than half full blocks and remove nonzeros from more than
half empty blocks to increase the variance of each of each sample (A, 1). This increases
the variance of the PHIL estimator Fy,(A), which increases the probability that it will lie
farther from its mean. Thus, our worst case matrix has only completely full blocks and
blocks with only one nonzero. One can show formally that the variance of Fy, is maximized
when these two types of blocks occur in equal number. For our concrete test case, we create
a 10,000 x 10,000 matrix with 10,000 full 12 x 12 blocks and 10,000 sparse 12 x 12 blocks.
PHIL should perform poorly on this matrix.

pathological 0SKI is a matrix designed to bring out the worst in the OSKI algorithm.
Because OSKI samples rows with equal probability, hiding many blocks which look different
from the rest of the matrix in a single row should cause OSKI to perform poorly. This
matrix is of size 100,000 x 100,000, and the first 6 rows are dense, while all other rows have
only a single nonzero in the first column.

6.3 Metrics

Since autotuning algorithms typically run at runtime before execution of the tuned operation,
the speedups gained by autotuning must be weighed against the execution time of the
algorithm. Since our example operation to autotune is sparse matrix-vector multiplication,
we normalize the time taken to perform fill estimation by the time it takes to perform a
parallel CSR matrix-vector multiply without blocking.

We use the simple performance model described by Vuduc. et al. in [15] and summarized
in Section 2 to select a block size. Since the modeled performance is proportional to the fill,
we judge the quality of a fill estimate using the maximum relative error.

Definition 6.1. The maximum relative error of a fill estimate f is

|fo — Fbl

T

Assume that for some fill estimates f the maximum relative error is e. Since the
performance model is proportional to the fill, our approximate performance model is accurate
to within a factor of (1 + €) from the true performance model that uses the true fill F. We
choose the block size maximizing our approximate model. Consider the best guess block size
which maximizes the true model. Since our approximate models of both the chosen block
size and the best guess is accurate to within a factor of (1 + €) from the true model, the true
modeled performance of our chosen block size is at most a factor of (1 + €)? from the true
modeled performance of the best guess. We therefore measure the mean over several trials
of the maximum relative error over all block sizes. Note that if the maximum relative error
is greater than 1, this represents a complete loss of accuracy, as a bogus algorithm which
returns 0 for the estimated fill of all block sizes would achieve a better maximum relative
error.

19



6.4 Experiments

Figure 3 compares the the estimation algorithms in terms of mean estimation time, mean
maximum relative error (Definition 6.1), and the resulting BCSR, matrix-vector multiply time
of the selected block sizes on our suite of 42 matrices with fixed values of €, §, and o. All
means are the average of 100 trials. Times are normalized to the mean time taken to perform
one parallel sparse matrix-vector multiply (SpMV) on the unblocked CSR matrix. The block
sizes are chosen using the performance model in [15]. To create the performance matrix
P for the performance model, we timed BCSR matrix-vector multiplication performance
for 100 trials on a 1000 x 1000 dense matrix. All blocked and non-blocked matrix-vector
multiplies are performed using TACO [24].

The data shows that PHIL was both accurate and efficient.

Over all matrices, architectures, and maximum block sizes, the maximum error observed
by PPHIL and PHIL was 0.0480, while in a few cases OSKI produced results with a mean
maximum relative error which was worse or much worse than 1, a complete loss of accuracy.

On average, PPHIL was able to produce a fill estimate in 1.3810 times the time it took
to compute one sparse matrix vector multiply (2.0440 times when B = 12, 0.7181 times
when B = 4). This was an average of 61.176 times faster than OSKI. To compare the two
serial algorithms, PHIL was an average of 7.8160 times faster than OSKI. Since PHIL and
PPHIL use the same fixed number of samples, normalizing the runtime of PHIL shows that
PHIL takes longer relative to the parallel CSR matrix-vector multiplication time on smaller
matrices. However, PHIL was more efficient on larger matrices (when autotuning is most
important). When B = 12 and there were more than 10,000,000 nonzeros, PPHIL was able
to produce a fill estimate in an average of 0.7268 times the time it took to compute one
sparse matrix vector multiply.

Our parallelization strategy was effective. On our “Ivy Bridge” architecture (with
12 cores), when B = 12, PPHIL was 6.6154 times faster than PHIL. On our “Haswell”
architecture (with 16 cores), when B = 12, PPHIL was 9.6680 times faster than PHIL.

Both the PHIL and OSKI estimates led to remarkably similar BCSR matrix-vector
multiplication times. It may be possible to improve the chosen block sizes with a more
complex performance model [20], but our focus is on estimating the fill and not on modeling
the performance of sparse kernels.

Figure 3 also shows that for a fixed setting of parameters, the runtime and relative error
of our fill estimation algorithms varies substantially from matrix to matrix (although the
relative error of PHIL is consistently small). We wish to compare the algorithms across all
settings of parameters. Therefore, Figure 4 shows the mean maximum relative error as a
function of the runtime of the estimation algorithm on four different matrices. Both axes
use logarithmic scale.

Figure 4 shows that on four interesting test matrices, PHIL provides better estimates
of the fill than OSKI for any amount of time invested. We ran the implementations for
longer on the pathological cases in order to see them produce good estimates. Out of all
four matrices, PHIL and OSKI have the most similar performance on pathological PHIL.
On pathological 0SKI, OSKI fails to estimate the fill in any reasonable time.

7 Conclusion

PHIL estimates the fill of a sparse matrix at least 2 times faster than OSKI on most of
our real-world inputs and provides useful estimates of the fill even in pathological test
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Figure 3

(a) We compare the fill estimation capabilities of PHIL, PPHIL (a parallel version of PHIL), and OSKI
on our “Ivy Bridge” system with a maximum considered block size of B = 4. The parameters
to PHIL and PPHIL are ¢ = 0.25 and § = 0.01. The parameters to OSKI are o = 0.02 (the
recommended setting). Highlighted cells show the better result between PHIL, PPHIL, and OSKI.
* Results with an asterisk are cases where a slowdown was observed when the performance model
was used with the given estimates. Since an autotuner may choose to use CSR if no speedup is
observed with the new block size, these results are listed as 1.0.

Matrix Information Normalized Time Mean Maximum Normalized SpMV
to Estimate Fill Relative Error Time ( [15] Model)
Name k (#nonzeros) Size (#rows + #cols) PuiL  PPui. OSKI ~ Pui.  PPuiL OSKI ~ PuiL  PPuiL OSKI
Domain: 2D/3D Problem
nd24k 28,715,634 144,000 3.227 0430 10.43 0.006  0.007  0.002 0.769  0.769  0.769
BenElechil 13,150,496 491,748 2.710 0.542 10.17 0.003  0.003  0.004 0.639 0.639 0.639
kim2 11,330,020 913,952 2.956 0.602 14.27 0.010 0.011  0.002 1.0* 1.0* 1.0*
nd6k 6,897,316 36,000 7.576  1.378 10.15 0.007  0.007  0.004 0.752  0.752  0.752
nd3k 3,279,690 18,000 1512 3.017  9.898 0.007 0.006  0.006 0.578  0.578  0.578
Domain: Computational Fluid Dynamics
atmosmodl 10,319,760 2,979,504 1.998 0.453 20.49 0.008 0.007  0.001 1.000 1.000 1.000
3dtube 3,213,618 90,660 8.644 1.721 8.526 0.009 0.008 0.014 0.498  0.498  0.498
Domain: Computer Vision
bundle_adj 20,208,051 1,026,702 0.862 0.143  3.925 0.005 0.006 0.023 0.708 0.708 0.708
Domain: Electromagnetics
fem_hifreq_circuit 20,239,237 982,200 1.552  0.324  9.531 0.006 0.006 0.004 0.737  0.737  0.737
Domain: Graph
hugetric-00010 19,771,708 13,185,530 0.365 0.073  14.59 0.004 0.004 0.001 1.0* 1.0* 1.0*
kron_g500-lognl7 10,228,360 262,144 1.538 0.308 4.716 0.001  0.001 0.011 1.000 1.000  1.000
flickr 9,837,214 1,641,756 0.356  0.063 1.846 0.002 0.002 0.014 1.000 1.000 1.000
pdblHYS 4,344,765 72,834 7.737  1.593  8.496 0.006  0.006 0.012 0.441  0.441  0.441
12010 2,346,294 968,962 4.528 0924 13.12 0.002  0.002 0.003 1.000 1.000  1.000
in2010 1,281,716 534,142 7.612 1.809 15.35 0.003  0.003  0.004 1.0* 1.0% 1.0*
0k2010 1,274,148 538,236 7.632  1.469 12.36 0.002 0.002 0.004 1.0* 1.0* 1.0*
Domain: Linear Programming
spal 46,168,124 331,899 1481 0.220 6.737 0.005 0.005 0.008 0.981 0.981 0.981
rail4284 11,284,032 1,101,178 2.901 0.554 5.821 0.007  0.007 0.125 1.0* 1.0* 1.0*
degme 8,127,528 844,916 3.587 0.807 10.63 0.005  0.006  0.060 1.0* 1.0* 1.0*
guptal 2,164,210 63,604 8.085 1.808 5.175 0.008 0.007  0.226 1.000 1.000 1.0*
pds-100 1,096,002 670,820 13.62 2.594 15.87 0.002  0.001  0.009 1.000 1.000 1.000
Domain: Mathematical Optimization
largebasis 5,560,100 880,040 4.645 1.098 18.08 0.008 0.008 0.004 1.0* 1.0* 1.0*
exdata_1 2,269,501 12,002 7.431 1.607 3.818 0.004 0.005 0.018 0.468  0.468  0.467
Domain: Model Reduction Problem
boneS10 55,468,422 1,829,796 1.043 0.175 12.33 0.007  0.007 0.002 0.754  0.754  0.754
Domain: Optimization Problem
mipl 10,352,819 132,926 2.773 0416 5517 0.007  0.006 0.061 0.644 0.644 0.668
Domain: Power Network
TSOPF_RS_b2383 16,171,169 76,240 3.012 0432 6.579 0.005 0.005 0.008 0.707  0.707  0.707
kkt_power 14,612,663 4,126,988 1.078 0.220 13.58 0.004 0.004 0.003 1.000 1.000  1.000
Domain: Structural
af_shell10 52,672,325 3,016,130 0.909 0.157 14.70 0.007  0.007  0.002 1.0* 1.0* 1.0*
Idoor 46,522,475 1,904,406 1.041 0.194 12.86 0.007  0.007  0.005 0.959  0.959  0.959
Emilia_923 41,005,206 1,846,272 1.258 0.248 14.15 0.006  0.006 0.003 0.870  0.870  0.870
inline_1 36,816,342 1,007,424 1.271  0.232  10.03 0.007  0.006 0.004 0.746  0.746  0.746
F1 26,837,113 687,582 1.170  0.237 6.856 0.006  0.007  0.006 0.658  0.658  0.658
af_shell9 17,588,875 1,009,710 2.147  0.447  12.30 0.007  0.007  0.004 0.892  0.892  0.889
halfb 12,387,821 449,234 2.880 0.571 10.17 0.007  0.007  0.009 0.771  0.771 0.771
troll 11,985,111 426,906 3.096 0.629 10.42 0.006  0.007  0.009 0.634 0.634 0.634
pwtk 11,634,424 435,836 2.987 0.598 10.25 0.007  0.007  0.006 0.802 0.802 0.802
fcondp2 11,294,316 403,644 2,933 0.625 9.663 0.005 0.006 0.007 0.654 0.654 0.654
crankseg_1 10,614,210 105,608 4.628 0.851 9.728 0.008 0.008 0.019 1.0* 1.0* 1.0%
m_tl 9,753,570 195,156 4220 0.876 10.07 0.006 0.006 0.012 0.673  0.673  0.673
gearbox 9,080,404 307,492 4.508 0.923 11.78 0.007  0.007 0.010 0.770  0.770  0.770
bmwT7st_1 7,339,667 282,694 3.989  0.830 9.847 0.008 0.008 0.014 0.778 0.778  0.787
ship_001 4,644,230 69,840 7.011 1.559 8.438 0.008  0.008 0.022 0.787 0.786  0.784
s3dkt3m2 3,753,461 180,898 9.433 2.032 12.64 0.007  0.007  0.009 0.789  0.789  0.789
ct20stif 2,698,463 104,658 9.911 2.187 8.895 0.008 0.008 0.022 0.734 0.734 0.734
nasasrb 2,677,324 109,740 13.40 2.612 1228 0.005 0.005 0.019 0.549  0.549  0.549
Domain: Synthetic
pathological PHIL 14,499,856 240,000 3.003 0.565 8.575 0.005 0.006 0.005 0.661 0.661 0.661
pathological OSKI 6,999,994 2,000,000 1.066 0.241 4.619 0.005 0.005 1.800 0.765 0.765 1.0*
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Figure 3

(b) We compare the fill estimation capabilities of PHIL, PPHIL (a parallel version of PHIL), and
OSKI on our “Ivy Bridge” system with a maximum considered block size of B = 12. The
parameters to PHIL and PPHIL are ¢ = 3 and § = 0.01. The parameters to OSKI are o = 0.02 (the
recommended setting). Highlighted cells show the better result between PHiL, PPHIL, and OSKI.
* Results with an asterisk are cases where a slowdown was observed when the performance model
was used with the given estimates. Since an autotuner may choose to use CSR if no speedup is
observed with the new block size, these results are listed as 1.0.

Matrix Information Normalized Time Mean Maximum Normalized SpMV
to Estimate Fill Relative Error Time ( [15] Model)
Name k (#nonzeros) Size (#rows + #cols) PuiL  PPumi. OSKI ~ Pui.  PPuiL OSKI  PuiL  PPuiL OSKI
Domain: 2D/3D Problem
nd24k 28,715,634 144,000 7.772  1.028  87.77 0.031  0.031 0.016 0.796 0.796  0.796
BenElechil 13,150,496 491,748 9.054 1.398 81.26 0.022  0.023 0.011 0.679  0.679  0.679
kim2 11,330,020 913,952 9.385 1.438 91.55 0.032  0.034  0.006 1.0* 1.0* 1.0*
nd6k 6,897,316 36,000 19.34 2,903 69.70 0.030  0.030 0.028 0.688 0.688  0.688
nd3k 3,279,690 18,000 49.43  6.774  86.04 0.031  0.030 0.038 0.617 0.617 0.617
Domain: Computational Fluid Dynamics
atmosmodl 10,319,760 2,979,504 6.370  1.026  90.93 0.023  0.023  0.008 1.000 1.000 1.000
3dtube 3,213,618 90,660 42.28  6.467 97.21 0.024 0.024 0.070 0.554  0.554  0.554
Domain: Computer Vision
bundle_adj 20,208,051 1,026,702 2497 0.391  28.05 0.024 0.026 0.089 0.745  0.745  0.745
Domain: Electromagnetics
fem_hifreq_circuit 20,239,237 982,200 4.467  0.676  70.50 0.016 0.015 0.013 0.740  0.740  0.740
Domain: Graph
hugetric-00010 19,771,708 13,185,530 1.399 0.249 63.27 0.009  0.010  0.005 1.0* 1.0* 1.0*
kron_g500-lognl7 10,228,360 262,144 4.064 0.732  35.14 0.004 0.004 0.045 1.0* 1.0* 1.0*
flickr 9,837,214 1,641,756 1.208 0.168 12.00 0.006  0.007  0.041 1.0* 1.0* 1.0*
pdb1HYS 4,344,765 72,834 32.87 4.602 84.24 0.022  0.024 0.039 0.543  0.543  0.543
12010 2,346,294 968,962 18.33  2.990  59.29 0.006  0.006  0.009 1.0* 1.0* 1.0*
in2010 1,281,716 534,142 33.67 5.712 61.44 0.008 0.008 0.015 1.000  1.000  1.000
0k2010 1,274,148 538,236 25.62  4.257 44.43 0.007 0.006 0.012 1.0* 1.0* 1.0*
Domain: Linear Programming
spal 46,168,124 331,899 3.462 0.454 62.84 0.015 0.015 0.026 0.963 0.963 0.963
rail4284 11,284,032 1,101,178 5.552  0.802 37.88 0.017 0.017 0.388 0.775  0.775  0.817
degme 8,127,528 844,916 11.19  1.694 76.79 0.017  0.017  0.077 1.0* 1.0* 1.0*
guptal 2,164,210 63,604 36.10 5.550 54.42 0.023 0.024 0.514 1.0* 1.0* 1.0*
pds-100 1,096,002 670,820 33.12  5.059 44.42 0.004 0.004 0.026 1.000 1.000 1.000
Domain: Math tical Optimization
largebasis 5,560,100 880,040 13.61 2.082 77.22 0.025 0.025 0.016 0.880 0.880 0.880
exdata_1 2,269,501 12,002 17.98 2.611 23.74 0.032  0.033  4.029 0.351  0.351  0.350
Domain: Model Reduction Problem
boneS10 55,468,422 1,829,796 2.787 0437 95.33 0.027  0.026  0.009 0.769  0.769  0.769
Domain: Optimization Problem
mipl 10,352,819 132,926 8.063 1.1563 45.83 0.030 0.032 0.334 0.626  0.626  0.650
Domain: Power Network
TSOPF_RS_b2383 16,171,169 76,240 9.009 1.290 68.73 0.038  0.039 0.073 0.797 0.797  0.799
kkt_power 14,612,663 4,126,988 2.944 0472 5713 0.009 0.009 0.014 1.0* 1.0* 1.0*
Domain: Structural
af_shell10 52,672,325 3,016,130 2.527 0.331  95.59 0.024 0.024 0.004 0.791  0.791 0.791
Idoor 46,522,475 1,904,406 2.792 0498 87.46 0.025 0.024 0.012 0.764 0.764 0.764
Emilia_923 41,005,206 1,846,272 3.455 0.507 97.22 0.021  0.021 0.010 0.809  0.809  0.809
inline_1 36,816,342 1,007,424 3.505  0.506  76.41 0.019 0.020 0.014 0.840 0.840 0.840
F1 26,837,113 687,582 3.301 0492  52.89 0.019  0.019 0.019 0.665 0.665 0.665
af_shell9 17,588,875 1,009,710 6.804 1.142 87.64 0.025 0.026  0.007 0.766  0.766  0.766
halfb 12,387,821 449,234 9.328 1.455 79.13 0.027  0.027 0.027 0.850 0.850 0.851
troll 11,985,111 426,906 11.66 1.931 92.59 0.024  0.023 0.030 0.766  0.766  0.766
pwtk 11,634,424 435,836 9.512 1494 75.14 0.034 0.035 0.018 0.779  0.779  0.779
fecondp2 11,294,316 403,644 9.396 1.451 72.23 0.024 0.022  0.030 0.609  0.609  0.609
crankseg_1 10,614,210 105,608 13.46  2.021 81.54 0.025 0.023 0.049 0.952  0.952 0.982
m_tl 9,753,570 195,156 12.66 1.854 78.65 0.020 0.020 0.037 0.667  0.667 0.667
gearbox 9,080,404 307,492 14.17 2165 86.71 0.022  0.022 0.035 0.727  0.727  0.727
bmwT7st_1 7,339,667 282,694 16.65 2.658  87.87 0.026  0.026 0.038 1.0% 1.0% 1.0%
ship_001 4,644,230 69,840 26.79 3.490 81.01 0.030  0.028  0.060 0.863 0.863 0.867
s3dkt3m2 3,753,461 180,898 22.77  3.080 65.90 0.033  0.033  0.021 0.597  0.597  0.598
ct20stif 2,698,463 104,658 34.57 5.596  65.73 0.026  0.026  0.067 0.532  0.532  0.555
nasasrb 2,677,324 109,740 35.83 5236 76.95 0.020 0.019 0.043 0.378 0.378 0.378
Domain: Synthetic
pathological PHIL 14,499,856 240,000 8.006 1.157 70.89 0.042  0.045 0.042 0.659 0.659  0.663
pathological OSKI 6,999,994 2,000,000 2.532 0374 18.15 0.012 0.014 3.666 0.774 0.774  0.782
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(¢) We compare the fill estimation capabilities of PHIL, PPHIL (a parallel version of PHIL), and
OSKI on our “Haswell” system with a maximum considered block size of B = 4. The parameters
to PHIL and PPHIL are ¢ = 0.25 and § = 0.01. The parameters to OSKI are o = 0.02 (the
recommended setting). Highlighted cells show the better result between PHiL, PPHIL, and OSKI.
* Results with an asterisk are cases where a slowdown was observed when the performance model
was used with the given estimates. Since an autotuner may choose to use CSR if no speedup is

Figure 3

observed with the new block size, these results are listed as 1.0.

Matrix Information

Normalized Time
to Estimate Fill

Mean Maximum
Relative Error

Normalized SpMV
Time ( [15] Model)

Name k (#nonzeros) Size (#rows + #cols) PuiL  PPumi. OSKI ~ Pui.  PPuiL OSKI  PuiL  PPuiL OSKI
Domain: 2D/3D Problem
nd24k 28,715,634 144,000 1.905 0.259 6.889 0.006  0.007  0.002 0.482 0.482 0.482
BenElechil 13,150,496 491,748 1.787 0.174  7.001 0.003  0.003  0.003 0.492  0.492  0.492
kim2 11,330,020 913,952 1.548 0.210 6.794 0.011  0.010  0.002 0.645 0.645 0.645
nd6k 6,897,316 36,000 3.905 0.459 5.847 0.006  0.006  0.005 0.417  0.417  0.417
nd3k 3,279,690 18,000 25.50 3.004 19.20 0.007  0.006 0.007 0.445 0.445 0.445
Domain: Computational Fluid Dynamics
atmosmodl 10,319,760 2,979,504 1.275  0.171  9.999 0.007  0.008  0.001 1.000 1.000 1.000
3dtube 3,213,618 90,660 20.55 2.069 21.00 0.008 0.008 0.015 0.587  0.587  0.587
Domain: Computer Vision
bundle_adj 20,208,051 1,026,702 0.741  0.072  3.300 0.005 0.005 0.023 0.630 0.630 0.630
Domain: Electromagnetics
fem_hifreq_circuit 20,239,237 982,200 1.319 0.192 7.792 0.005 0.005 0.004 0.759  0.759  0.759
Domain: Graph
hugetric-00010 19,771,708 13,185,530 0.512  0.050 18.12 0.004 0.004 0.001 1.000 1.000  1.000
kron_g500-lognl7 10,228,360 262,144 1.389 0.119 4.601 0.001  0.001 0.012 1.0* 1.0* 1.0*
flickr 9,837,214 1,641,756 0.409 0.036 1.843 0.002 0.003 0.013 1.000 1.000 1.000
pdblHYS 4,344,765 72,834 8.541 0.998  9.658 0.006 0.006 0.010 0.502  0.502  0.502
12010 2,346,294 968,962 6.620 0.640 13.31 0.002  0.002  0.003 1.0* 1.0* 1.0*
in2010 1,281,716 534,142 13.03 1.152 15.21 0.002 0.003 0.004 1.0% 1.0* 1.0*
0k2010 1,274,148 538,236 14.28 1.259 16.78 0.002  0.002  0.003 1.0* 1.0* 1.0*
Domain: Linear Programming
spal 46,168,124 331,899 1.156  0.119  5.961 0.005 0.005 0.007 0.634 0.634 0.634
rail4284 11,284,032 1,101,178 2,113 0.217  5.291 0.007  0.008 0.130 1.000 1.000 0.998
degme 8,127,528 844,916 2.080 0.202 5.723 0.005  0.005  0.060 1.0* 1.0* 1.0*
guptal 2,164,210 63,604 14.37  1.567  9.737 0.008 0.008 0.232 1.0* 1.0* 0.997
pds-100 1,096,002 670,820 17.43  1.750 14.71 0.001  0.002  0.008 1.0* 1.0* 1.0*
Domain: Math tical Optimization
largebasis 5,560,100 880,040 2.805 0.288  8.462 0.007  0.007 0.005 0.783 0.783 0.783
exdata_1 2,269,501 12,002 12.83  1.220 7.453 0.004 0.004 0.020 0.482  0.482 0.482
Domain: Model Reduction Problem
boneS10 55,468,422 1,829,796 0.725 0.088 8.173 0.007  0.007 0.002 0.671 0.671 0.671
Domain: Optimization Problem
mipl 10,352,819 132,926 2.069 0.182 5.229 0.006  0.007  0.054 0.577  0.577  0.577
Domain: Power Network
TSOPF_RS_b2383 16,171,169 76,240 2.386  0.198  5.826 0.004 0.005 0.007 0.434 0434 0434
kkt_power 14,612,663 4,126,988 0.768 0.077  7.536 0.004 0.004 0.003 1.000 1.000 1.000
Domain: Structural
af_shell10 52,672,325 3,016,130 0.658  0.077  9.323 0.006  0.007  0.002 0.824 0.824 0.824
Idoor 46,522,475 1,904,406 1.119 0.110 12.68 0.008 0.008 0.005 1.0* 1.0* 1.0*
Emilia_923 41,005,206 1,846,272 0.704 0.094 7.590 0.006  0.006  0.003 0.564  0.564  0.564
inline_1 36,816,342 1,007,424 1.450  0.137 11.24 0.007  0.006 0.005 0.825 0.825 0.825
F1 26,837,113 687,582 0.851 0.112  5.029 0.007  0.007  0.006 0.462  0.462 0.462
af_shell9 17,588,875 1,009,710 1.375 0.130 7.791 0.007  0.007  0.004 0.600  0.600  0.600
halfb 12,387,821 449,234 1.724 0.154 6.272 0.007  0.007 0.010 0.504 0.504  0.504
troll 11,985,111 426,906 2.030 0.252 6.788 0.006  0.006  0.009 0.463  0.463  0.463
pwtk 11,634,424 435,836 1.808 0.162 6.266 0.007  0.007  0.006 0.494  0.494 0.494
fcondp2 11,294,316 403,644 1.814 0.164  6.095 0.005  0.006  0.008 0.433 0433 0.433
crankseg_1 10,614,210 105,608 2.343  0.220 5.866 0.008 0.008 0.019 0.803  0.803 0.803
m_tl 9,753,570 195,156 2,184 0.212  5.650 0.006 0.006 0.012 0.304 0.304 0.304
gearbox 9,080,404 307,492 2.802 0.397  7.425 0.007  0.007  0.010 0.421 0421 0421
bmwT7st_1 7,339,667 282,694 2.682 0.264 6.364 0.008 0.007 0.014 0.477 0477 0477
ship_001 4,644,230 69,840 5.949 0.531 7.651 0.008 0.008 0.023 0.406  0.406  0.406
s3dkt3m2 3,753,461 180,898 11.67 1.078 15.14 0.007  0.007 0.010 0.526  0.526  0.526
ct20stif 2,698,463 104,658 26.75  2.664 23.79 0.008 0.008 0.024 0.620  0.620  0.620
nasasrb 2,677,324 109,740 21.77 2182 18.93 0.005 0.005 0.019 0.403  0.403  0.403
Domain: Synthetic
pathological PHIL 14,499,856 240,000 1.860 0.217  5.562 0.006  0.006 0.006 0372 0.372  0.372
pathological OSKI 6,999,994 2,000,000 0.982 0.134 2.827 0.005 0.005 1.800 0.776  0.776  0.776
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Figure 3

(d) We compare the fill estimation capabilities of PHIL, PPHIL (a parallel version of PHIL), and
OSKI on our “Haswell” system with a maximum considered block size of B = 12. The parameters
to PHIL and PPHIL are ¢ = 3 and § = 0.01. The parameters to OSKI are o = 0.02 (the
recommended setting). Highlighted cells show the better result between PHiL, PPHIL, and OSKI.
* Results with an asterisk are cases where a slowdown was observed when the performance model
was used with the given estimates. Since an autotuner may choose to use CSR if no speedup is
observed with the new block size, these results are listed as 1.0.

Matrix Information Normalized Time Mean Maximum Normalized SpMV
to Estimate Fill Relative Error Time ( [15] Model)
Name k (#nonzeros) Size (#rows + #cols) PuiL  PPumi. OSKI ~ Pui.  PPuiL OSKI  PuiL  PPuiL OSKI
Domain: 2D/3D Problem
nd24k 28,715,634 144,000 8.433 0.938 1124 0.031  0.031 0.016 1.0* 1.0* 1.0*
BenElechil 13,150,496 491,748 5.001 0.495 48.62 0.022  0.023 0.011 0.570  0.570  0.570
kim2 11,330,020 913,952 5.166 0.499 54.42 0.034  0.034  0.006 0.627  0.627  0.627
nd6k 6,897,316 36,000 12.51 1.388 55.28 0.032  0.031  0.027 0.590  0.590  0.590
nd3k 3,279,690 18,000 80.60 9.004 172.0 0.031  0.030  0.039 1.0* 1.0* 1.0*
Domain: Computational Fluid Dynamics
atmosmodl 10,319,760 2,979,504 4242 0409 63.43 0.023  0.023  0.007 1.0* 1.0* 1.0*
3dtube 3,213,618 90,660 64.44  6.809 168.0 0.024 0.022 0.073 0.485 0.485  0.485
Domain: Computer Vision
bundle_adj 20,208,051 1,026,702 1.943  0.232 23.80 0.025 0.025 0.087 0.779  0.779  0.779
Domain: Electromagnetics
fem_hifreq_circuit 20,239,237 982,200 3.402 0.384 55.35 0.015 0.015 0.014 0.605 0.605 0.605
Domain: Graph
hugetric-00010 19,771,708 13,185,530 1.282  0.127 64.33 0.009  0.009  0.005 1.000 1.000  1.000
kron_g500-lognl7 10,228,360 262,144 3.973  0.459 39.98 0.004 0.004 0.044 1.000 1.000 1.000
flickr 9,837,214 1,641,756 1.002  0.097 11.23 0.006  0.006 0.040 1.000 1.000 1.000
pdb1HYS 4,344,765 72,834 3218 2968 95.77 0.024 0.023 0.041 0.601  0.601  0.601
12010 2,346,294 968,962 28.64  2.627 84.26 0.006  0.006  0.009 1.0* 1.0* 1.0*
in2010 1,281,716 534,142 60.05 5.496 100.2 0.007  0.007  0.015 1.000  1.000  1.000
0k2010 1,274,148 538,236 59.06 5.399 96.17 0.006 0.006 0.012 1.000 1.000 1.000
Domain: Linear Programming
spal 46,168,124 331,899 2.991 0.324 60.44 0.015 0.015 0.025 0.717  0.717  0.717
rail4284 11,284,032 1,101,178 5.666 0.583  49.33 0.017  0.017  0.359 0.930 0.930 0.934
degme 8,127,528 844,916 7.401 0810 54.22 0.016  0.017  0.076 1.0* 1.0* 0.998
guptal 2,164,210 63,604 49.63 5254  86.09 0.023 0.024 0.510 1.0* 1.0* 1.0*
pds-100 1,096,002 670,820 68.77  6.304 90.79 0.004 0.003 0.027 1.000 1.000 1.000
Domain: Math tical Optimization
largebasis 5,560,100 880,040 10.12  0.923  54.76 0.027 0.024 0.015 0.612 0.612 0.612
exdata_1 2,269,501 12,002 5849 6470 88.21 0.033  0.031  5.051 0.633  0.633 0.610
Domain: Model Reduction Problem
boneS10 55,468,422 1,829,796 1.720 0.180 65.37 0.027  0.027  0.009 0.635 0.635 0.635
Domain: Optimization Problem
mipl 10,352,819 132,926 6.075 0.683  40.67 0.032 0.032 0.315 0.556  0.556  0.551
Domain: Power Network
TSOPF_RS_b2383 16,171,169 76,240 5.577 0.614 47.80 0.040 0.036 0.075 0.453  0.453  0.453
kkt_power 14,612,663 4,126,988 2452 0.233 47.12 0.008 0.008 0.013 1.000 1.000 1.000
Domain: Structural
af_shell10 52,672,325 3,016,130 1.478  0.170  60.91 0.025 0.025 0.004 0.614 0.614 0.614
Idoor 46,522,475 1,904,406 1.950 0.215 64.42 0.024 0.024 0.012 0.551  0.551  0.551
Emilia_923 41,005,206 1,846,272 1.977  0.194 60.87 0.021  0.021 0.010 0.652  0.652  0.652
inline_1 36,816,342 1,007,424 2.368 0.235 58.50 0.018 0.019 0.014 0.807 0.807 0.807
F1 26,837,113 687,582 2.712  0.341 48.82 0.019 0.019 0.019 0.708 0.708  0.708
af_shell9 17,588,875 1,009,710 3.764 0431 51.25 0.025 0.025  0.007 0.445 0.445  0.445
halfb 12,387,821 449,234 11.66  1.343 103.9 0.027  0.026  0.030 0.831 0.831 0.831
troll 11,985,111 426,906 6.259  0.648  52.39 0.024 0.024 0.032 0.532  0.532 0.532
pwtk 11,634,424 435,836 6.516 0.734 57.14 0.034 0.034 0.018 0.680 0.677  0.695
fcondp2 11,294,316 403,644 6.187 0.571 49.22 0.022  0.023  0.029 0.488  0.488  0.488
crankseg_1 10,614,210 105,608 1545 1.513 1178 0.024  0.024 0.050 1.0% 1.0% 1.0*
m_tl 9,753,570 195,156 7774 0.723  54.87 0.020 0.019 0.039 0.849 0.849 0.849
gearbox 9,080,404 307,492 8.115 0.807 51.59 0.022  0.022 0.037 0.540  0.540  0.540
bmwT7st_1 7,339,667 282,694 10.53 1.143 58.06 0.026  0.026 0.039 0.554  0.554  0.554
ship_001 4,644,230 69,840 3122 2913 1114 0.029 0.029 0.064 0.689 0.689  0.689
s3dkt3m2 3,753,461 180,898 3477 4.044  109.0 0.032  0.034 0.021 0.459  0.459  0.459
ct20stif 2,698,463 104,658 64.89 5.899 130.3 0.025 0.026  0.065 0.416 0.416  0.416
nasasrb 2,677,324 109,740 1023 9.649 211.1 0.019  0.019 0.044 0.609  0.609  0.609
Domain: Synthetic
pathological PHIL 14,499,856 240,000 5.697 0.685 57.57 0.043  0.048 0.042 0.440  0.440  0.440
pathological OSKI 6,999,994 2,000,000 2.388  0.270 18.17 0.012 0.012 3.666 0.704 0.704 0.714
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Figure 4
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(a) Real world matrices on “Ivy Bridge”. ct20stif is a stiffness matrix arising from the application
of finite element analysis to an engine block. It has a mix of mostly 3 x 3 and 6 x 6 dense blocks.
guptal is the matrix representation of a linear programming problem, and has no obvious block
structure.
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(b) Pathological cases on “Ivy Bridge”. These matrices are described in more detail in Section 6.2.

Figure 4: Mean maximum relative error (Definition 6.1) as a function of mean estimation
time (normalized to the mean time it takes to perform a parallel sparse matrix-vector
multiplication in CSR format using TACO [24]) for four matrices on “Ivy Bridge” with a
maximum block size of B = 12. Both axes use logarithmic scale. All means are the average
of 100 trials. The error bars reflect one standard deviation above and below the mean. Each
point is a separate setting for the parameters where € varies exponentially from 50 to 2 and
o ranges exponentially from 0.001 to 0.05. Note that errors above 1 represent a complete
loss of accuracy.
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Figure 4
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(¢) Real world matrices on “Haswell”. ct20stif is a stiffness matrix arising from the application
of finite element analysis to an engine block. It has a mix of mostly 3 x 3 and 6 x 6 dense blocks.
guptal is the matrix representation of a linear programming problem, and has no obvious block
structure.
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(d) Pathological cases on “Haswell”. These matrices are described in more detail in Section 6.2.

Figure 4: Mean maximum relative error (Definition 6.1) as a function of mean estimation
time (normalized to the mean time it takes to perform a parallel sparse matrix-vector
multiplication in CSR format using TACO [24]) for four matrices on “Haswell” with a
maximum block size of B = 12. Both axes use logarithmic scale. All means are the average
of 100 trials. The error bars reflect one standard deviation above and below the mean. Each
point is a separate setting for the parameters where € varies exponentially from 50 to 2 and
o ranges exponentially from 0.001 to 0.05. Note that errors above 1 represent a complete
loss of accuracy.
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cases. We found that PHIL and OSKI produced comparable speedups in blocked sparse
matrix-vector multiply in most cases using their recommended parameters. PHIL produced
far more accurate estimates of the fill than its worst-case accuracy guarantee.

Sampling techniques are useful in autotuning since we can often sacrifice some accuracy
in the heuristics for a faster autotuner. As libraries for numerical computation evolve and
autotuning moves from compile-time to run-time implementations, developers will need
efficient heuristics [34]. This work indicates broader potential for sampling techniques in the
design of autotuned numerical software. The creation of faster sampling algorithms with
provable guarantees will allow library developers to write software that can more accurately
specialize to user data and provide the best possible performance for their application and
hardware.

7.1 Future Work

Future work includes extensions to handle sparse tensors of arbitrary order in multiple
storage formats. Software complexity is the limiting factor in the development of such an
implementation.

7.2 Extensions

Some formats store their blocks in a sparse format [9,12]. These blocks are usually much
larger than the blocks mentioned in this paper, but we can extend an algorithm for Problem
2.1 to estimate the fill of larger block sizes by limiting our attention to multiples of some
base block size.

Problem 7.1 (Coarse Fill Estimation). Given a tensor A € F/1x2X*Ir 5 hase block size
q, and a maximum multiplier B, compute an approximation Fy(A) accurate to within a
factor of € for all b where b, = bl.q, and 1 < b’ < B with probability 1 — 4.

We can create a tensor A’ € FIixX*In where A'[j] is the number of nonzeros in
block j of A under the blocking scheme q. Notice that fp/(A') = f(A), so a solution to
Problem 2.1 on A’ is a solution to Problem 7.1 on A. Since k(A") < k(A), I' <T, and we
can construct A’ in O(k(A)) time, most algorithms (including PHIL) that solve Problem 2.1
can solve Problem 7.1 with an addition of O(k(.A)) to their asymptotic running time.
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